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Topic 7 Sequences and Series 
 
7.1  SEQUENCES 
 
7.1.1. SEQUENCES OF REAL NUMBERS 
 
A sequence can be thought of as a list of numbers written in a definite order: 

   
The number a1 is known as the first term, a2 as the second term, and in general an  is the nth 
term. 
 
A sequence can be defined as a function whose domain is the set of positive integers.   
It may also be denoted by defining the n-th term an, or {an} or { }∞

=1nna . 

Elimination of a certain number of terms from a sequence forms a new sequence.   
The new sequence is called a subsequence of the old one. 
 
Examples of sequences denoted by different descriptions: 

1. { }∞
=1

2
nn  can also be denoted as an

 = n2 or {1, 4, 9, 16, 25,…} 

2. 
∞

=







+ 11 nn

n
 can also be denoted as 

1+
=

n

n
an  or 









+
,...

1
,...,

5

4
,

4

3
,

3

2
,

2

1

n

n

 
 
3.  ∞

=− 3}3{ nn  can be denoted as 3,3 ≥−= nnan  or ,...}3,...,3,2,1,0{ −n  

 
New Sequences from the Old Ones 
 
Suppose we are given two sequences }{},{ nn ba  and a number k.  We shall denote by 

}{ nn ba +  the sequence whose nth term is an + bn.  Similarly, }{},{ nnnn baba − and }{ nka  are 

respectively the sequences whose nth terms are nnnn baba ,− and kan. 

If 0≠nb  for all n, then








n

n

b

a
 is the sequence whose nth term is

n

n

b

a
.  

 
7.1.2. PROPERTIES OF SEQUENCES 
 
Bounded and Unbounded Sequences 
A sequence {an} is said to be bounded if there is a number M such that Man ≤  for all 

1≥n . Otherwise, it is said to be unbounded. 

Example of bounded sequences: 








n

1
,   }{e},{(-1) -nn   

Example of unbounded sequences: }{},)1{(},{ 2 nnn n−  
 
If { an} and {bn}are bounded, then so are the following sequences: 
  1.  }{ nak ⋅ for any constant k;     2.    {‒an};     3.  }{ nn ba ± ;   4.  {anbn};    and 

 5.  any subsequence }{
kna of {an} 
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Monotonic 
A sequence {an} is called nondecreasing if 1+≤ nn aa  for all 1≥n , that is, ...321 ≤≤≤ aaa .  

It is called nonincreasing if 1+≥ nn aa  for all 1≥n .  It is called monotonic (or monotone) if 

it is either nondecreasing or nonincreasing. 

 
Examples of monotonic sequences: 

  1. 








+ 5

3

n
 (nonincreasing) 2. 









n

1

   
(nonincreasing) 

  3. {‒n} (nonincreasing)           4. {n2}    (nondecreasing) 

  5. }{ n  (nondecreasing)          6. {c}     (constant) 

] 
Examples 1: Determine whether the following sequence is bounded and monotonic.  

(a) )}1({ −nn   (b)








+13

2
n

n

   

Solution (a) 

 1)1()1( 2 ≥−≥−= nfornnnan  .  The sequence is therefore unbounded. 

1)1()1(1 ≥=−≥+=+ nforannnna nn  [Alternatively, one can try to show that 01 ≤− +nn aa ] 
Therefore the sequence is nondecreasing, hence monotonic. 

 
Solution (b) 









+13

2
n

n

  

Note that 
3

1
)1(

3

1

3

2

3

1

3

2
1

=≤






=+
n

n

n

n

 

Hence 
3

1

3

2

3

2
11

≤= ++ n

n

n

n

 and therefore 








+13

2
n

n

 is bounded. 

Now 1
3

2

3

2

3

2

3

2
112

1

1 ≥=≤






== +++

+

+ nforaa nn

n

n

n

n

n

n  

Hence








+13

2
n

n

 is nonincreasing, hence monotonic. 

[Alternatively, one can try to show that 01 ≥− +nn aa
 
] 

 
 

7.1.3. CONVERGENCE AND DIVERGENCE OF SEQUENCES 
 
A sequence {an} converges (or is convergent) to the number L if to every positive number 

0>ε , there corresponds an integer N such that for all n, 
   ε<− Lan , whenever n>N 

 
If { an} converges to L, we write Lan

n
=

∞→
lim or simply Lan → , and call L the limit of the 

sequence. 
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The above definition says that a sequence {an} has the limit L if we can make the terms na  as 

close to L as we like by taking n sufficiently large. If a sequence is not convergent, then we 
say it diverges (or is divergent). 
 
Theorems 
 

1. A convergent sequence has only one limit. 
2. A subsequence of a convergent sequence is also convergent and has the same limit.  
            In other words, if a sequence has a divergent subsequence, then the sequence is 

divergent. 
3. A monotonic and bounded sequence is convergent. 
4. A convergent sequence is bounded, but is not necessarily monotonic. 
 
Refer back to Example 1 

(a) Since )}1({ −nn is unbounded, it is divergent. 

(b) Since 








+13

2
n

n

is bounded and monotonic, it is convergent. 

 
Limit Laws for Sequences 
 

If { an} and {bn} are convergent sequences such that Aan
n

=
∞→

lim , Bbn
n

=
∞→

lim  and c is a 

constant, then: 
1. BAba nn

n
+=+

∞→
)(lim  

2. BAba nn
n

−=−
∞→

)(lim  

3. BAba nn
n

⋅=⋅
∞→

)(lim  

4. Acac n
n

⋅=⋅
∞→

)(lim  

5. 
B

A

b

a

n

n

n
=

∞→
lim ,  if 0≠nb   for all n and 0≠B  

6. cc
n

=
∞→

lim  

 
Some limits that arise frequently  [Here,  x  is a FIXED number] 

1. 0
ln

lim =
∞→ n

n
n

  [You can apply L’hopital’s rule to get this result.] 

2. 1lim =
∞→

n

n
n  

3. 1lim
1

=
∞→

n

n
x  )0( >x  

4. 0lim =
∞→

n

n
x  1<x  

5. x
n

n
e

n

x =






 +
∞→

1lim  for any x 

6. 0
!

lim =
∞→ n

xn

n
 for any x 
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Example 2: 
 
Determine whether the following sequences converge.  

(a) 






 −+

n

n n)1(
  (b) 
















 −−
n

n 1
1)1(   

Solution (a) 

   

( )
1

1
1lim

)1(
lim =








 −+=






 −+
∞→∞→ nn

n n

n

n

n
. 

  
    The limit exists. 

    The sequence 






 −+

n

n n)1(
 is convergent. 

 

Solution (b) 

 















 −−
∞→ n

n

n

1
1)1(lim  doesn’t exist. 

  The sequence 















 −−
n

n 1
1)1(  is divergent. 

   







+−

−
=







 −−
odd is   if 

1
1

even is   if 
1

11
1)1(

n
n

n
n

n
n

           

        
cannot approach a particular number.

  
 
 
The Squeeze Theorem/Sandwich Theorem for Sequences 
 
Let }{},{},{ nnn cba be sequences. If there is an integer N such that nnn cba ≤≤  for Nn ≥  and 

Lca n
n

n
n

==
∞→∞→

limlim , then Lbn
n

=
∞→

lim . 

 
Example 3: Find the limit. 

(a)  








+
− −

1

)1(
2

1

n

nn

  (b)








+1

cos
2n

nn
  

Solution (a) 

                      
      

Let 
1

)1(
2

1

+
−=

−

n

n
b

n

n  

Choose 
12 +

−=
n

n
an  and  

12 +
=

n

n
cn . 

We have  
11

)1(

1 22

1

2 +
≤

+
−≤

+
− −

n

n

n

n

n

n n

 

0
1

0

1
1lim

1
lim

1
1

1

lim
1

lim

22

2
==








 +

−

=


















+

−

=








+
−

∞→

∞→

∞→∞→

n

n

n

n
n

n

n

n

nn

    

Also 0
1

lim
2

=








+∞→ n

n
n

. 

Hence, by the Sandwich Theorem,   

                                0
1

cos
lim

2
=









+∞→ n

nn
n

. 

Solution (b) 

  
  

Let 
1

cos
2 +

=
n

nn
bn   

Choose 
12 +

−=
n

n
an  and  

12 +
=

n

n
cn . 

We have    
11

cos

1 222 +
≤

+
≤

+
−

n

n

n

nn

n

n
 

0
1

0

1
1lim

1
lim

1
1

1

lim
1

lim

22

2
==








 +

−

=


















+

−

=








+
−

∞→

∞→

∞→∞→

n

n

n

n
n

n

n

n

nn

   

Also 0
1

lim
2

=








+∞→ n

n
n

. 

Hence, by the Sandwich Theorem,     

                      0
1

cos
lim

2
=









+∞→ n

nn
n

. 
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7.2 SERIES 
 

If we try to add the terms of an infinite sequence ∞
=1}{ nna , we get an expression of the form 

   a1 + a2 + a3 + …+ an + … 

which is called an infinite series (or just a series) and is denoted by ∑
∞

=1n
na  or ∑ na  

 
7.2.1. PARTIAL SUMS and CONVERGENCE OF SERIES 
 

Suppose that we are given a sequence }{ na . We can construct a new sequence }{ nS  from 

}{ na  such that  

11 aS =  212 aaS +=   3213 aaaS ++=       

and in general,  

∑
=

=++++=
n

k
knn aaaaaS

1
321 ...   

 

We call nS  the nth partial sum of the series ∑
∞

=

+++++=
1

321 ......
n

kn aaaaa   

 
If the sequence {Sn} is convergent and SSn

n
=

∞→
lim  exists as a real number,  

then the series ∑ na  is said to be convergent and we write  

Saaaaa
n

nk ∑
∞

=

==+++++
1

321 ......   (sum of the series) 

Otherwise we say that the series is divergent or the series diverges. 
 
An example using the partial sums to determine convergence 
 

Determine whether the series is convergent or divergent.  If it is convergent, find its sum. 

                         
∑

∞

= +1 )1(

1

n nn  
Solution  

  Let 
)1(

1
...

43

1

32

1

21

1

)1(

1

1 +
++

⋅
+

⋅
+

⋅
=

+
=∑

= kknn
S

k

n
k  

  By using partial fraction decomposition, 

∑∑
==










+
−=

+
=

k

n

k

n
k nnnn

S
11 1

11

)1(

1
  

 








+
−++







 −+






 −+






 −=
1

11
...

4

1

3

1

3

1

2

1

2

1
1

kk
 

 
1

1
1

+
−=

k
 

  We now see that 1→kS  as ∞→k  

  Therefore, ∑
∞

= +1 )1(

1

n nn
 is convergent and the sum is 1, i.e., 1

)1(

1

1

=
+∑

∞

=n nn
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7.2.2. GEOMETRIC SERIES 
 

An important example of infinite series is the geometric series 

  ∑
∞

=

−− =+++++++
1

11432 ......
n

nn arararararara   0≠a  

where each term is obtained from the preceding term by multiplying it by the common ratio r. 
 
This geometric series is convergent if 1<r and its sum is  

r

a
ar

n

n

−
=∑

∞

=

−

11

1  

If 1≥r , the geometric series is divergent. 

 
Example 4:  Determine whether the series is convergent or divergent.   
                        If it is convergent, find its sum. 

∑
∞

=

−−
1

1

4

)3(

n
n

n

  

Solution  

       
...

4

)3(
...

4

)3(

4

)3(

4

3

4

1

4

)3( 1

1
4

3

3

2

2

1

+−++−+−+−+=− −∞

=

−

∑ k

k

n
n

n

 













+






 −++






 −+






 −+






 −+






 −+=
−

...
4

3
...

4

3

4

3

4

3

4

3
1

4

1
1432 k

∑
∞

=

−








 −=
1

1

4

3

4

1

n

n

 

Obviously ∑
∞

=
−

−−
1

1

1

4

)3(

n
n

n

is a geometric series with 1=a  and 
4

3−=r  

Since 1
4

3

4

3 <=−=r , ∑
∞

=
−

−−
1

1

1

4

)3(

n
n

n

 is convergent. 

The sum of ∑
∞

=
−

−−
1

1

1

4

)3(

n
n

n

is 
7

4

4

3
1

1

1
=








−−
=

− r

a
. 

Thus the sum of the given series ∑∑
∞

=
−

−∞

=

− −=−
1

1

1

1

1

4

)3(

4

1

4

)3(

n
n

n

n
n

n

 is 
7

1

7

4

4

1 =







 

 
Limit Laws for Series 
 
If ∑ na and ∑ nb  are convergent series with the sum A and B respectively, then the 

following series are also convergent: 

1. ∑∑
∞

=

∞

=

==
11 n

n
n

n cAacca  

2. ∑ ∑∑
∞

=

∞

=

∞

=

+=+=+
1 11

)(
n n

nn
n

nn BAbaba  

3. ∑ ∑∑
∞

=

∞

=

∞

=

−=−=−
1 11

)(
n n

nn
n

nn BAbaba  
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7.2.3. DIVERGENCE TEST 
 

Theorem: If ∑
∞

=1n
na  is convergent, then 0lim =

∞→ n
n

a .  

                   In other words, if n
n

a
∞→

lim  does not exist or 0lim ≠
∞→ n

n
a , then ∑

∞

=1n
na  is divergent. 

But the converse of the above theorem is not true,  

that is,  0lim =
∞→ n

n
a  does not imply the convergence of ∑

∞

=1n
na . 

Divergence test (the n-th term test for divergence) 

For a given series ∑
∞

=1n
na , if n

n
a

∞→
lim  does not exist or 0lim ≠

∞→ n
n

a , then ∑
∞

=1n
na  is divergent.   

 

Example 5: Show that the following series diverges. 

(a) ∑
∞

= +1
2

2

45n n

n
  (b) ∑

∞

=1

2

n

n  (c) ∑
∞

=

+−
1

1)1(
n

n   

Solution (a)  0
5

1
4

5

1
lim

45
lim

2

2

2

≠=
+

=
+ ∞→∞→

n
n

n
nn

 

Hence the series∑
∞

= +1
2

2

45n n

n
 diverges by the Divergence Test. 

Solution (b)  
  

∞=
∞→

2lim n
n  

The limit does not exist. 

Hence the series∑
∞

=1

2

n

n  diverges by the Divergence Test. 

Solution (c)     ∑
∞

=

+−
1

1)1(
n

n  diverges since 1)1(lim +

∞→
− n

n
 does not exist. 

 
7.2.4  THE INTEGRAL TEST AND p-SERIES TEST  
 
(The Integral Test)  Suppose that f  is a continuous, positive, and decreasing function for 

1≥x .  Suppose also that )(nfan = .  Then the series ∑
∞

=1n
na and the integral ∫

∞

1

)( dxxf  both 

converge or both diverge.  In other words: 

i) If ∫
∞

1

)( dxxf  converges, then ∑
∞

=1n
na  also converges. 

ii) If ∫
∞

1

)( dxxf  diverges, then ∑
∞

=1n
na  also diverges. 

p-Series  By using the integral test, we can show that the following result is true.  
 

( The p-Series Test )  The series ∑
∞

=1

1

n
pn

is called the p-series.   

            The p-series  is convergent if p > 1 and divergent if 1≤p  
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Example 6: Determine whether the following series converges? 

(a) ∑
∞

= +1 1

5

n n
  (b) ∑

∞

=

−
1

3

25

n n

n
  

Solution (a)   ∑
∞

= +1 1

5

n n
 

The function 
1

5
)(

+
=

x
xf is positive, continuous and decreasing for 1≥x  

Hence we can apply the Integral Test. 

[ ] ∞=+=
+

=
+

= ∫∫∫
=

∞→∞→

∞

=

∞

=

b
b

n
bb

nn

xdx
x

dx
x

dxxf 1

111

)1ln(lim5
1

5
lim

1

5
)(  

Thus ∫
∞

=1

)(
n

dxxf  is divergent and ∑
∞

= +1 1

5

n n
is also divergent by the Integral Test. 

Solution (b)    ∑
∞

=

−
1

3

25

n n

n
∑

∞

=










−=

1
33

25

n n

n

n
∑∑

∞

=

∞

=

−=
1 2

5
1

3

1
2

1
5

nn
n

n
 

Since ∑
∞

=1
3

1

n n
 and ∑

∞

=1 2

5

1

n
n

are p-series with p = 3 and 
2

5=p respectively, they are both 

convergent.  Thus ∑
∞

=

−
1

3

25

n n

n
 is convergent. 

 
 
7.2.5 THE COMPARISON TESTS 
 
The Direct Comparison Test 
Suppose that ∑ na and ∑ nb  are series with positive terms, then:  

(i) If ∑ nb is convergent and nn ba ≤  for all n, then ∑ na is also convergent. 

(ii) If  ∑ nb is divergent and nn ba ≥  for all n, then ∑ na  is also divergent. 

 
The Limit Comparison Test 
Suppose that ∑ na and ∑ nb  are series with positive terms, then  

(i) If c
b

a

n

n

n
=

∞→
lim , where c is a positive number,  

           then  ∑ na and  ∑ nb both converge or  both diverge. 

(ii) If 0lim =
∞→

n

n

n b

a
, and  ∑ nb converges, then ∑ na converges 

(iii) If ∞=
∞→

n

n

n b

a
lim , and  ∑ nb diverges, then ∑ na diverges 

In this course, you are not required to know the limit comparison test. It is discussed 
here for completeness. 
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Example 7: Determine whether the following series converges or diverges? 

(a) 
  
∑

∞

=









+1 13n

n

n

n
     (b) ∑

∞

= −1 12

1

n
n

   

Solution (a) 

Let  
n

n n

n
a 









+
=

13
,   

nn

n n

n
b 







=






=
3

1

3
 .   

Since 
nn

n

n







<








+ 3

1

13
, we have nn ba ≤  

The series ∑
∞

=









1 3

1

n

n

is a convergent series since it is a geometric series with initial term    

                                                       
3

1=a  and common ratio 
3

1=r , which is less than 1. 

Therefore ∑
∞

=









+1 13n

n

n

n
is convergent by the Direct Comparison Test. 

The Limit Comparison Test can also be used.  

 01

3

1
1

1
lim

13

3
lim

3

1

13
lim >=



















+
=









+
=



















+
∞→∞→∞→

n

n

n

nn

n

n

n
n

nn

n

 

Since ∑
∞

=









1 3

1

n

n

is convergent, then ∑
∞

=









+1 13n

n

n

n
is also convergent. 

 
Solution (b) 

Let 
12

1

−
=

nna and 
nnb

2

1=  .  

Since 
nn 2

1

12

1 >
−

, we have nn ba ≥  

The series ∑
∞

=1 2

1

n
n

is a convergent series since it is a geometric series with initial term  
2

1=a  

and common ratio 
2

1=r , which is less than 1. 

The Direct Comparison Test doesn't apply.                          (Can you compare with 
12

1
−n

? )  

Using the Limit Comparison Test:  01

2

1
1

1
lim

12

2
lim

2

1
12

1

lim >=
−

=
−

=−
∞→∞→∞→

n

nn

n

n

n

n

n
 

                             Since ∑
∞

=1 2

1

n
n

is convergent, then ∑
∞

= −1 12

1

n
n

is also convergent. 

Remark: The terms of the series being tested must be smaller than those of a convergent 
series or larger than those of the divergent series.   

               If the terms are larger than the terms of a convergent series or smaller than the term 
of a divergent series, then the direct comparison test doesn't apply. 
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7.2.6 THE ALTERNATING SERIES TEST (Optional, i.e., not required)  
An alternating series is a series whose terms are alternately positive and negative. 
 

Example:    ...
)1(

...
5

1

4

1

3

1

2

1
1

1

+−+−+−+−
+

n

n

 

       ...)1(...654321 1 +−++−+−+− + nn  
 
If the alternating series   

 ...)1....()1(
1

1
4321

1 +−+−+−=−∑
∞

=

++

n
n

n
n

n aaaaaa     0≥na   

satisfies     (i)  nn aa ≤+1  for all n  (which means na is nonincreasing),   AND
  
(ii)  0lim =

∞→ n
n

a  

then the series is convergent. 
 
Example 8: Determine whether the following series converges or diverges? 

  (a) ∑
∞

=

−−
1

1)1(

n

n

n
  (b) ∑

∞

=








 −

1 !

2

1
sin

n n

n π
  

Solution (a) The series 
nn

n

n

n 1

1

1 )1(
...

4

1

3

1

2

1
1

)1( −∞

=

− −
++−+−=

−
∑  is alternating and   

     satisfies (i) 
nn

1

1

1 <
+       

][ 1 nn aa ≤+   
 
(ii) 0

1
lim =

∞→ nn
    

]0lim[ =
∞→ n

n
a  

     Therefore,  the series ∑
∞

=

−−
1

1)1(

n

n

n
is convergent by the Alternating Series Test. 

Note: 0
1

lim =
∞→ nn

 doesn't imply that ∑
∞

=1

1

n n
is convergent.   

             In fact, ∑
∞

=1

1

n n
 is a divergent p-series with 

2

1=p   

Solution (b)    ∑
∞

=








 −

1 !

2

1
sin

n n

n π
 

  We know ∑
∞

=

+−=+−+−=






 −
1

1)1(...11111
2

1
sin

n

nn π  

  Hence ∑∑
∞

=

+∞

=

−=







 −

1

1

1 !

)1(

!

2

1
sin

n

n

n nn

n π
is alternating and satisfies 

      (i) 
!

1

)!1(

1

nn
<

+            
][ 1 nn aa ≤+    (ii) 0

!

1
lim =

∞→ nn                
]0lim[ =

∞→ n
n

a  

Therefore the series ∑∑
∞

=

+∞

=

−=







 −

1

1

1 !

)1(

!

2

1
sin

n

n

n nn

n π
is convergent by the Alternating Series 

Test. 
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7.2.7 THE RATIO AND ROOT TESTS 
 

Absolute Convergence Versus Conditional Convergence 
 
A series ∑ na is called absolutely convergent if the series of absolute values ∑ na  is 

convergent.   
If ∑ na  is divergent but ∑ na  is convergent, then ∑ na  is said to be conditionally 

convergent.  
If a series ∑ na is absolutely convergent, then ∑ na is convergent; the converse is not true. 

Note: For a series ∑ na with non-negative terms (i.e. 0≥na ),  

         absolute convergence and convergence mean the same thing. 
 

Example 9: Determine whether the series ∑
∞

=1
2

cos

n n

n is convergent or divergent. 

Solution  This series  ...
3

3cos

2

2cos

1

1coscos
222

1
2

+++=∑
∞

=n n

n
 has positive and negative terms but it is 

not alternating (first term is positive, next three are negative, then the following three are positive…).   

We can apply comparison test to the series of absolute values ∑∑
∞

=

∞

=

=
1

2
1

2

coscos

nn n

n

n

n
 

Since 1cos ≤n , 
22

1cos

nn

n
≤ .    We know that ∑

∞

=1
2

1

n n
is convergent (p-series with p = 2) and 

therefore ∑
∞

=1
2

cos

n n

n
 is convergent by the Comparison Test. 

        Thus the series ∑
∞

=1
2

cos

n n

n
 is absolute convergent and is therefore convergent. 

The Ratio Test 

For a given series ∑ na , let 
n

n

n a

a
L 1lim +

∞→
= . 

i) If 1<L , then ∑ na  is absolutely convergent. 

ii)  If 1>L  or ∞=L , then  ∑ na is divergent 

iii)  If 1=L , the test is inconclusive 

Example 10: Test the convergence of series ∑
∞

=
−

1

3

3
)1(

n
n

n n

 
Solution  We let  

n

n
n

n
a

3
)1(

3

−=
 

n

n

n a

a 1lim +

∞→

n
n

n
n

n n

n

3
)1(

3

)1(
)1(

lim 3

)1(

3
1

−

+−
=

+
+

∞→
3)1(

3 3

3

)1(
lim

n

n n

nn
⋅+=

+∞→

3
1

3

1
lim 







 +=
∞→ n

n
n

3
1

1
3

1
lim 







 +=
∞→ nn  

( ) 1
3

1
01

3

1 3 <=+=
 

Thus, by the Ratio Test, the series ∑
∞

=

−
1

3

3
)1(

n
n

n n is absolutely convergent and therefore convergent. 
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The Root Test 
 

For a given series ∑ na , let n
n

n
aL

∞→
= lim . 

i) If 1<L , then ∑ na  is absolutely convergent. 

ii)  If 1>L  or ∞=L , then ∑ na is divergent 

iii)  If 1=L , the test is inconclusive 

Example 11: Test the convergence of the series ∑
∞

=









+
+

1 23

32

n

n

n

n
 

Solution:      We use  
n

n n

n
a 









+
+=

23

32
 

n
n

n
a

∞→
lim n

n

n n

n









+
+=

∞→ 23

32
lim 1

3

2
2

3

3
2

lim
23

32
lim <=



















+

+
=









+
+=

∞→∞→

n

n
n

n
nn

. Thus, by the Root Test, the 

series ∑
∞

=









+
+

1 23

32

n

n

n

n
is absolutely convergent and therefore convergent. 

Examples 12: Determine whether the series is absolutely convergent, conditional convergent or 
divergent 

  (a) ∑
∞

=









+
+

1
2

2

12

1

n

n

n

n
  (b) ∑

∞

=

−
1

)1(

n

n

n
 

Solution (a):    

n
n

n
a

∞→
lim 









+
+=









+
+=

∞→∞→ 12

1
lim

12

1
lim

2

2

2

2

n

n

n

n
n

n

n

n

 

= 1
2

1
12

11
lim

2

2

<=
















+

+

∞→

n

n
n

 

Thus, the series ∑
∞

=









+
+

1
2

2

12

1

n

n

n

n
is absolutely convergent by the Root Test. 

Solution (b):   The series ∑
∞

=

−
1

)1(

n

n

n
 is alternating and 

                            satisfies (i)
nn

1

1

1 <
+

               (ii) 0
1

lim =
∞→ nn

 

Therefore the series ∑
∞

=

−
1

)1(

n

n

n
is convergent by the Alternating Test. 

But ∑∑
∞

=

∞

=

=
−

11

1)1(

nn

n

nn
is divergent (p-series with p<1).  So ∑

∞

=

−
1

)1(

n

n

n
 is conditional convergent. 

 
In this course, we shall apply the ratio test and the root test only to infinite series with 
positive terms so that the question of conditional convergence does not arise. 
 
Restate the root test and ratio test for infinite series with positive terms. 
Root Test: 
Ratio Test: 
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7.2.8 POWER SERIES 
 
A series of the form  

...3
3

2
210

0

++++=∑
∞

=

xcxcxccxc
n

n
n  

where x is a variable and cn's are constants is called a power series. The constants cn's  are 
called the coefficients of the power series. We adopt the convention 10 =x  even if x = 0. 
 

More generally, a series of the form  

...)(...)()()()( 3
3

2
210

0

+−++−+−+−+=−∑
∞

=

n
n

n

n
n axcaxcaxcaxccaxc  

is called a power series centered at a or a power series about a.  Here we adopt the 
convention that 1)( 0 =− ax  when x = a. 
 
The Convergence Theorem for Power Series 
 

For a given power series about a,  there are only three possibilities: 
(i) The series converges only when x = a 
(ii)  The series converges for all x 
(iii)  There is a positive number R such that the series converges if Rax <−  and  

diverges if  Rax >− . 

 

The number R is called the radius of convergence of the power series. We adopt the 
convention that in case (i), we let R = 0 and in case (ii), we let ∞=R . 
 

The interval of convergence I of a power series is the interval that contains all values of x 
for which the power series converges. In case (i), the “interval I” is actually a singleton set 
{ a}  and in case (ii), ),( ∞−∞=I .  In case (iii) I can be one of the following intervals: 

),( RaRa +− , ],( RaRa +− , ),[ RaRa +− , or ],[ RaRa +−  
 
7.3 TAYLOR SERIES AND MACLAURIN SERIES 
 

If a function f (x) has a power series representation (expansion) at a, that is, if it can be 
expressed in the following form: 

∑
∞

=

−=
0

)()(
n

n
n axcxf   for Rax <−   

then its coefficients are given by the formula 

!

)()(

n

af
c

n

n =    for all n 

Substituting this formula for nc back into the series, we have  

∑
∞

=

−=
0

)(

)(
!

)(
)(

n

n
n

ax
n

af
xf   for Rax <−  

The power series on the right hand side is called the Taylor series of the function f at a.  
In other words, 

   
...)(

!3

)(
)(

!2

)(
)(

!1

)(
)()( 3

'''
2

'''

+−+−+−+= ax
af

ax
af

ax
af

afxf  
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In the case when a = 0, we have 

   ∑
∞

=

=
0

)(

!

)0(
)(

n

n
n

x
n

f
xf   for Rx <  

which is called the Maclaurin series of function f. 

 

The series becomes 

             
...

!3

)0(

!2

)0(

!1

)0(
)0()( 3

'''
2

'''

++++= x
f

x
f

x
f

fxf  

 

Example 15: Find the Taylor series for xexf =)(  centered at a = 2.  

Solution    xnxxxx exfexfexfexfexf ===== )(,...,)(,)(,)(,)( )()3()2()1(

               

                  
2)(2)3(2)2(2)1(2 )2(,...,)2(,)2(,)2(,)2( efefefefef n =====       

2)( )2( ef n =  for all n 

           Thus the Taylor series for xexf =)( centered at a = 2 is    

            ∑∑
∞

=

∞

=

−=−=
0

2

0

)(

)2(
!

)2(
!

)2(
)(

n

n

n

n
n

x
n

e
x

n

f
xf  

              or   ...)2(
!3

)2(
!2

)2(
!1

3
2

2
22

2 +−+−+−+= x
e

x
e

x
e

eex  

 
Example 16: Find the Maclaurin series for f(x)=ex and its radius of convergence.  
 

Solution    As in Example 15, xn exf =)()(  for all n. For the Maclaurin series, a = 0 and so 

1)0(...)0()0()0( 0)()2()1( ====== effff n  

Therefore the Maclaurin Series is ...
!3!2!1

1
!!

)0(
)(

32

00

)(

++++=== ∑∑
∞

=

∞

=

xxx

n

x
x

n

f
xf

n

n

n

n
n

 

To find the radius of convergence, use the Ratio Test 
 

10
)1(

1
lim

)1(
lim

!
.

)!1(
limlim

1
1 <=

+
=

+
=

+
=

∞→∞→

+

∞→

+

∞→ n
x

n

x

x

n

n

x

a

a
nnn

n

n
n

n

n
 

 
So the series converges for all x by the Ratio Test and the radius of 
convergence is ∞=R . The interval of  convergence is ),( ∞−∞=I . 

 
Note: Some important Maclaurin series and their intervals of convergence 

...1
1

1 32

0

++++==
− ∑

∞

=

xxxx
x n

n    )1,1(−  

...
!3!2!1

1
!

32

0

++++==∑
∞

=

xxx

n

x
e

n

n
x

 
),( ∞−∞  

...
!7!5!3)!12(

)1(
sin

753

0

12

+−+−=
+

−=∑
∞

=

+ xxx
x

n

x
x

n

nn

  
),( ∞−∞  

...
!6!4!2

1
)!2(

)1(cos
642

0

2

+−+−=−=∑
∞

=

xxx

n

x
x

n

n
n

  
),( ∞−∞  

Taylor polynomial of order/degree n :  ∑
=

−=
n

k

k
k

n ax
k

af
xP

0

)(

)(
!

)(
)(

 

Maclaurin polynomial of order/degree n :  ∑
=

=
n

k

k
k

n x
k

f
xP

0

)(

!

)0(
)(  
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7.4 Fourier Series  
 
7.4.1  Periodic Functions 

A function f is periodic if there is some positive number p such that 

                             ( ) ( )f x p f x+ =  for all real x.  

 

Examples of periodic functions 

The trigonometric functions cos x and sin x are periodic functions of period 2π . We note that 
4π , 6π , 8π ,…, are also periods of the functions. In fact any multiple of 2π  is a period of 
the functions. But the smallest period is 2π . The smallest period is known as the 
fundamental period. 
The functions cos 2x and sin 2x are periodic functions of period π . In general cos kx and   

sin kx are periodic functions of period 
k

π2
. 

Frequency of a periodic function:     1 1
frequency = 

period p
=   

 
7.4.2  Fourier Series 

We assume that a periodic function can be represented by an infinite series in terms of sine 

and cosine functions. Such a representation is known as a Fourier series. It can be shown that: 

A Fourier series of a function f of period p = 2L  is given by  

 

( )

0

1

0

1

( ) cos sin
2

2
cos sin ,         where 

2 2

n n
n

n n
n

a n n
f x a x b x

L L

a
a n x b n x

L L

π π

π πω ω ω

∞

=

∞

=

 = + + 
 

= + + = =

∑

∑
,  

where      0

1
( )

L

L
a f x dx

L −
= ∫                                  

1 1
( ) cos ( ) cos

L L

n L L

n
a f x xdx f x n xdx

L L L

π ω
− −

= =∫ ∫    

1 1
( )sin ( )sin

L L

n L L

n
b f x xdx f x n xdx

L L L

π ω
− −

= =∫ ∫  

 What do these formulas look like 
when the period is 2π. 

 
 
Periodic functions in problems for 
this course shall be confined to 
only those with period 2π . 

 

    
 

The nn bandaa ,0, are known as Fourier coefficients. These coefficients are unknown and 

we have to find their values by integration.  



TMA1101 CALCULUS, T1-1718            Topic 7: Sequences and Series            

16 
 

Even though that the “=” sign is usually used to equate a periodic function and its Fourier 
series, we need to be a little careful. The function f and its Fourier series “representation” are 
only equal to each other if, and whenever, f is continuous. 
 
Example: 
 
Find the Fourier coefficients of the following periodic function 

 
,                0

( )
,                     0

k x
f x

k x

π
π

− − < <=  ≤ <
 

Solution 
 
Recall the definition of Fourier series: 

 )sincos(
2

)(
1

0 x
L

n
bx

L

n
a

a
xf n

n
n

ππ ++= ∑
∞

=

 

For the given f(x), −π < x < π,  we have L = π . The Fourier coefficients are: 

   0

1
( )

L

L
a f x dx

L −
= ∫  0)()(

1
)(

1
0

0
=





 +−== ∫∫∫ −−

π

π

π

π ππ
dxkdxkdxxf  

and 

 
0

0

0

0

1 1
( )sin ( )sin ( )sin

1 cos cos

nb f x nxdx k nxdx k nxdx

nx nx
k k

n n

π π

π π

π

π

π π

π

− −

−

= = − +

 
= − 

  

∫ ∫ ∫
 

    )cos1(
2

]0coscos)cos(0[cos πππ
π

n
nk

k
nn

n

k −=+−−−=  

We also note that cos 1π = − , cos2 1π = , cos3 1π = − , ⋯  

 
1    for odd 

cos
1      for even 

n
n

n
π

−
= 


  

and thus  
2     for odd 

1 cos
0     for even 

n
nx

n

− = 


. 

Hence the Fourier coefficient bn  is 

 
2

     if  is odd2
(1 cos )

0         if  is even
n

k
nk

b n n
n

n
π π

π


= − = 


 

Hence  

 4 1 1
( ) sin sin 3 sin 5

3 5

k
f x x x x

π
 = + + + 
 

⋯  
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Example 

Consider a 2π-periodic function  

 f(x) = x2 + x,    xπ π− < < ,    and  ( ) ( 2 )f x f x π= + . 

Sketch a graph of the function f(x) for values of x from x = −3π to x = 3π  and obtain a 

Fourier series expansion of the function. 

Solution 

 

 

 

 

 

The Fourier series of f  with period 2π : 

 
                                 

)sincos(
2

)(
1

0 nxbnxa
a

xf n
n

n ++= ∑
∞

=

 

with Fourier coefficients 

 2 2
0

1 1 3
( ) ( )

2
a f x dx x x dx

π π

π π
π

π π− −
= = + =∫ ∫  

and 

         ∫∫ −−
+==

π

π

π

π ππ
dxnxxxdxnxxfan cos)(

1
cos)(

1 2  

                  which on integration by parts, gives 

                                     

2

2 3 2

2 2

1 2 2 1
sin cos sin sin cos

1 4 4
cos ( 1)

n

n

x x x
a nx nx nx nx nx

n n n n n

n
n n

π

ππ
π π

π

−

 
= + − + + 

 

= = −

 

and    ∫∫ −−
+==

π

π

π

π ππ
dxnxxxdxnxxfbn sin)(

1
sin)(

1 2  

                  which on integration by parts, gives 

                              

2

2 3 2

1 2 2 1
sin sin cos cos sin

2 2
cos ( 1)

n

n

x x x
b nx nx nx nx nx

n n n n n

n
n n

π

ππ

π

−

 
= − + + − + 

 

= − = − −

 

Hence we get :
         

3
2

1 1

1 4 2
( ) ( 1) cos ( 1) sin

3
n n

n n

f x nx nx
n n

π
∞ ∞

= =
= + − − −∑ ∑  

 

3π−  π− π 3π  

f(x) 

x 
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Example 

A periodic function f(x) of period 2π (that is, f(x+2π) = f(x) is defined in the interval 

xπ π− < <  by 

 




<≤
<≤−

=
π

π
x

x
xf

0,1

0,0
)(  

Sketch a graph of f(x) for ππ 33 ≤≤− x   and  obtain a Fourier series expansion for the 

function. 

Solution   A graph of f(x) for ππ 33 ≤≤− x  is shown below: 

−3π −2π −π π 2π 3π

−1

1

y

x

 

The Fourier series for f  

 )sincos(
2

)(
1

0 nxbnxa
a

xf n
n

n ++= ∑
∞

=         
 

Thus the Fourier coefficients are  

 110
1

)(
1

0

0

0 =




 +== ∫∫∫ −−

π

π

π

π ππ
dxdxdxxfa  

 ∫−=
π

ππ
dxnxxfan cos)(

1
 

         0cos10
1 0

0
=





 += ∫ ∫−π

π

π
dxnxdx  

and      ∫−=
π

ππ
dxnxxfbn sin)(

1





 += ∫ ∫−

0

0
sin0

1
π

π

π
dxnxdx

 

              
( ) ])1(1[

1
cos1

1 n

n
n

n
−−=−=

π
π

π  

                    










=
odd is if   

2

even is if   0   

n
n

n

π

 

Thus we get: ...)5sin
5

1
3sin

3

1
(sin

2

2

1
)( ++++= xxxxf

π  

                              
∑

∞

=

−
−

+=
1

)12sin(
12

12

2

1

n

xn
nπ
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7.4.3  Odd and Even Function 
 
Odd functions: 
 

f(x) is an odd function if and only if (iff ) 
  
 ( ) ( )f x f x− = −        for   LxL ≤≤−  
The graph of an odd function is symmetric about the origin. If we already have the graph of f  

for x≥ 0, we can obtain the entire graph by rotating this portion through �180  about the origin. 

 

Examples of odd functions: 

     f(x) = sin(x)  is odd    because  sin(-x) = - sin(x)                        f(x) = 2x3−4x 

 

 

 

 

 

 

 

 

Fourier Series of Odd function 

Fourier series of an odd function, f(x) defined in LxL ≤≤−  is  

 )sincos(
2

)(
1

0 x
L

n
bx

L

n
a

a
xf n

n
n

ππ ++= ∑
∞

=

 

with    0)(
1

0 == ∫
−

L

L

dxxf
L

a  

∫
−

=






=
L

L

n dx
L

xn
xf

L
a 0cos)(

1 π
,    for  n = 1, 2, 3,… 

Thus    ∑
∞

=

=
1

)sin()(
n

n L

xn
bxf

π
           (also known as Fourier sine series) 

Example:  

Determine the Fourier series for f(x) = x3 in 44 ≤≤− x . 

Recall that    ∑
∞

=















+






+=
1 2

sin
2

cos
2

)(
n

nn
o xn

b
xn

a
a

xf
ππ

. 

Since f(x) = x3 is an odd function, thus a0= 0  and an = 0, for n =1,2,3,…. .  

sin(x) 
2x3− 4x 
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The Fourier coefficient is  

 dx
xn

xdx
xn

xbn 






=






= ∫∫
− 4

sin
2

1

4
sin

4

1 4

0

3
4

4

3 ππ
 

     = 
33

22
1 6
128)1(

π
π
n

nn −− +  

The Fourier series for f(x) = x3 in 44 ≤≤− x  is  

 






−−=∑
∞

=

+

4
sin

)6(
128)1()(

33

22

1

1 xn

n

n
xf

n

n π
π

π
. 

 
Even functions:  
 
f(x) is an even function if and only if (iff) 
  ( ) ( )f x f x− =            for    LxL ≤≤−  
 
The graph of an even function is symmetric with respect to the y-axis. 

Examples of even functions 

                      f(x) = −3x2+4,                                                     f(x) = cos x. 

 

 

 

 

 

 

 

 

 

 

Fourier Series of Even Function 

Fourier series for even function f(x) defined in LxL ≤≤− :  

 )sincos(
2

)(
1

0 x
L

n
bx

L

n
a

a
xf n

n
n

ππ ++= ∑
∞

=

 

where   0sin)(
1 =







= ∫
−

L

L

n dx
L

xn
xf

L
b

π ,     for n = 1, 2, 3,… 

Thus  ∑
∞

=

+=
1

0 )cos(
2

)(
n

n L

xn
a

a
xf

π
         (also known as Fourier cosine series) 

x 
cos(x) 
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Example:  

Determine the Fourier series of f(x) = x2  in 22 ≤≤− x  

Write 

  ∑
∞

=















+






+=
1 2

sin
2

cos
2

)(
n

nn
o xn

b
xn

a
a

xf
ππ

 

where 

  
3
8

2
1 2

2

2
0 == ∫

−

dxxa  

  ,...3,2,1,)1(
16

2
cos

2

1 2

2
22

2 =−=






= ∫
−

n
n

dx
xn

xa n
n π

π
 

  0
2

sin
2

1 2

2

2 =






= ∫
−

dx
xn

xbn

π  

Thus the Fourier series for f(x) = x2 in 22 ≤≤− x  is  

  






−+= ∑
∞

= 2
cos

)1(16

3

4
)(

1
22

xn

n
xf

n

n π
π  

 
Properties of Even and Odd Functions 
 

From calculus we have 
 

1.        0)( =∫−
L

L
dxxf    if  f(x) is odd  on  LxL ≤≤−  

 

2.        ∫∫ =
−

LL

L
dxxfdxxf

0
)(2)(   if  f(x) is even on  LxL ≤≤− . 
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