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Topic 7 Sequences and Series

7.1 SEQUENCES

7.1.1. SEQUENCESOF REAL NUMBERS

A sequence can be thought of as a list of numbatsewin a definite order:
Ay oy Ay @y, .., O :

s kL b m =
The numbela; is known as the first terna, as the second term, and in generals then™
term.

A sequence can be defined as a function whose dastie set opositive integers.
It may also be denoted by defining thh termay, or {as} or {a,}",.

Elimination of a certain number of terms from als&ice forms a new sequence.
The new sequence is calledubsequence of the old one.

Examples of sequences denoted by different desmrgt
1. {nz}::1 can also be denoted as= n’ or {1, 4, 9, 16, 25,...}

2. {L} can also be denoted ag =" o {12§ﬂi}
n+1j n+1 4 5

3. {~/n-3}%, can be denoted ag =+/n-3,n>3 0or{01,+/2,4/3,...A/n-3,...}

New Seguences from the Old Ones

Suppose we are given two sequenges}, {b} and a numbek. We shall denote by
{a +b} the sequence whos¥ term isa, + b,. Similarly, {a, -b}, {a b }and{ka} are
respectively the sequences whaSderms area, —b,, a b, andka..

n=n

If b, #0 for alln, then{%} is the sequence whos8 term is:—”.

n n

7.1.2. PROPERTIES OF SEQUENCES

Bounded and Unbounded Sequences

A sequence &} is said to bebounded if there is a numbeM such that|an|s M for all
n=1. Otherwise, it is said to henbounded.

Example of bounded sequenc%%}, {(-1)"}, {e™}
Example of unbounded sequencgs?, {(-1)"1}, {~/n}

If { a,} and {bn}are bounded, then so are the following sequences:
1. {kla,}for any constark; 2. {a); 3.{a,th}; 4. {abn}; and
5. any subsequenga, } of {an}
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Monotonic

A sequencedy} is callednondecreasingif a, <a.,, forall n>1, thatis,a, <a,<a, < ...
It is callednonincreasing if a, = a,,, for all n=1. Itis calledmonotonic (or monotone) if
it is either nondecreasing or nonincreasing.

Examples of monotonic sequences:

1. {is} (nonincreasing) 2{%} (nonincreasing)

n+

3. {-n} (nonincreasing) 4nf} (nondecreasing)

5. {/n} (nondecreasing) 6c{ (constant)
|
Examples1: Determine whether the following sequence is bodratel monotonic.

2n
(@) {n(n-1)} (b){s”*l}

Solution (a)

a, =n(n-1)>(n-1)?% for n>1. The sequence is therefore unbounded.
., =(h+Yn=n(n-1) =a, for n=1 [Alternatively, one can try to show tha} —-a.,,< 10
Therefore the sequence_is nondecreasing, hencetomao

2n
3n+l

Solution (b)

Note that 2+1 :E(Ej si(l)n A ¢
3™ 3.3 3 3
Hencez—+l :Z—HSE and therefor 2+1 is bounded.
3™ 33 3"
2m (220 _ 2
Now a,, = 372 :(gj 3 < 3 =a, for nxz1

2n
Henc iS nonincreasing, hence monotonic.

3n+1

[Alternatively, one can try to show that —a,,, = ]0

7.1.3. CONVERGENCE AND DIVERGENCE OF SEQUENCES

A sequence §,} converges (or is convergent) to the numbkrif to every positive numbe
£ >0, there corresponds an integésuch that for alh,
|a, —L| <&, wheneven>N

If {an} converges ta., we write lima, =L or simply a, — L, and callL thelimit of the

n—oo

sequence.
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The above definition says that a sequergg fas the limitL if we can make the terme, as

close toL as we like by taking sufficiently large. If a sequence is not convetgémen we
say itdiverges (or is divergent).

Theorems
1. A convergent sequence has oo limit.
2. A subsequence of a convergent sequence is @afs@igent and has tisame limit.
In other words, if a sequence has ardent subsequence, then the sequence is
divergent.
3. A monotonic and bounded sequence is conver gent.
4. A convergent sequence is bounded, babtsnecessarily monotonic.

Refer back to Example 1
€)) Sinceg{n(n-1)} is unbounded, it is divergent.

(b) Since{:nﬂ} is bounded and monotonic, it_is convergent.

Limit L awsfor Sequences

If {a,} and {b,} are convergent sequences such t!jm a,=A, limb =B andc is a

n-oo

constant, then:
1. lim(a, +b,) = A+B

n-oo

2 lim(a, -b,)=A-B
3. lim(a, b,) = AB
4

lim(c(a,) =clA

5.  lim=2 ith #0 forallnandB#0
b, B

6. limc=c

Some limits that arise frequently [Here, x isa FIXED number]

1. lim i =0 [You can apply L’hopital’s rule to get this resl
nee
2. lim&%n=1
1
3. limx" =1 (x>0)
4. limx"=0 [¥<1
. X\
5. I|m(1+—J =e* for anyx
neel N
Xn
6. lim— =0 for anyx
n-o
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Example 2:

Determine whether the following sequences converge.

n+(-1)"
@ e

(b) {(—1)“(1—

)

Solution (a)
|im(L_1)nJ = |im[1+ﬂJ -1.
N - ool n Nn-oo n

The limit exists.

+(-)" | .
The sequenc n+(= }IS convergent.
n

Solution (b)
Iim((—l)“(l—%]} doesn't exist.

n-oo

The sequenc%(—l)”(l—%j} is divergent.

1

1%

(_1)“(1_1j = n
n

_1+1
n

cannot approach a particular number.

if n iseven

ifn isodd

The Squeeze Theor em/Sandwich Theorem for Sequences

Let {a}, {b}, {c,} be sequences. If there is an intejyesuch thata, <b, <c, for n> N and

lima, =limc, =L, thenlimb, = L.

n- oo n - oo

Example 3: Find the limit.

(-)"*n ncosn
a b
(a) {nm O
Solution (a) Solution (b)
-1 ncosn
Letb:(l) X Letb, = 2
" n+1 n°+1
= = Choosea, = and c =
Choosea, . ) and c, 1) a, 21 " TP
-n (=)""'n n We have —n < ncosns n
We have n2+1s n? +1 = nZ+1 n+1 n°+1 n°+1
-1 ! = lim —=
oy ol M (2 ) =gim] 0= im0
lim| ———|=lim —— = =770 [ reeln?er) mm 1T 1YL
n n-e
n ! Alsolim n =0
Alsolim( . J:O. n-e\ 02 +1 '
n-oo n + .
. Hence, by the Sandwich Theorem,
Hence, by the Sandwich Theorem, y ncosn
. (ncosn Iim( j:O.
||m > :O. noo n2 +1
n-e\ n°+1
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7.2 SERIES
If we try to add the terms of an infinite sequefiag},_, , we get an expression of the form
atat+tazt...+a,+ ...

which is called amnfinite series (or just aseries) and is denoted bE a, or Zan
n=1

7.2.1. PARTIAL SUMSand CONVERGENCE OF SERIES
Suppose that we are given a sequefag . We can construct a new sequed&} from
{a,} such that
S =a S, =ata, S;=a ta, ta
and in general,

S =ata,tat.ta, =) 8
k=1

We call S, then™ partial sum of the seriesZan =q ta,+ta; +..+a +
n=1

If the sequence$} is convergent andim S, = S exists as a real number,

n-oo

then the serie§ a, is said to beonvergent and we write
a+a,+a,+..+a +..= > a =S (sum of the series)
n=1

Otherwise we say that the seriesliger gent or the series diverges.

An example using the partial sumsto deter mine conver gence

Determine whether the series is convergent or dev&tr If it is convergent, find its sum.

i 1

= n(n+1)

Solution

Let S = Z O
n(n+1) 12 203 314 k(k +1)
By using partlal fraction decomposition,

5= Zn(n+1) Z(n n+1j

1 1 1) (1.1 1 1
=l1-= - -_ |+ ———
2 2 3 3 4 k k+1
_ 1
k+1
We now see tha, - 1 ask - «
Therefore,z is convergent and the sum is 1, |E n(n 1+1)
n=1
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7.2.2. GEOMETRIC SERIES

An important example of infinite series is th@metric series
atar+ar’+ar®+ar® +..+ar"t+..=> ar" az0

where each term is obtained from the preceding tgrmultiplying it by the common ratio

This geometric series eonvergent if |r| <1and its sum is

i armt=_2
n=1 1_ r

If |r| =1, the geometric series is divergent.

Example4: Determine whether the series is convergent or darr
If it is convergent, fin isum.

_3g)™t
Z()

Solution
(3)” T _1.-3,. (97,69 -3+
Z At T T Tt T
2 3 4 k-1 o _ n-1
:1{“(—_3}[—_:%} ) () ) +_,}:12 J
4 4 4 4 4 4 4%\ 4
Obwouslyz( " is a geometric series with = 1andr——%
n-1
Sincelr| = | | Z( 3’ is convergent.
n-1
Thesumofz( ) is 9 1 :;.

N
4

n-1 n-1
Thus the sum of the given serE( 3y’ Z ( 43;_1 _(7j :%
n=1

Limit Lawsfor Series

If Zan and an are convergent series with the sufmand B respectively, then th
following series are also convergent:

1. icq :Cian =CcA
n=1 n=1

2. Y(a+h)=Ya +db =A+B
n=1 n=1 n=1

3. Y(a-b)=Ya ->b, =A-B
n=1 n=1 n=1

[4%
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7.2.3. DIVERGENCE TEST

Theorem: If Zan is convergent, thefima, =0.

n=1

In other words, ifma, does not exist olima, # 0, thenZan is divergent.

n-oo n-—oo
- - n=1

But the converse of the above theorem is not true,

that is, lima, = Odoes not imply the conver gence of Zan .

n- oo
n=1

Divergencetest (then-th term test for diver gence)

For a given seried"a, , if lima, does not exist olim a, # ,OthenZan is divergent.
n=1 n-o n-e n=1

Example5: Show that the following series diverges.

a b n c -1
();5n2+4 (); (c) nZ:;,()
2
Solution (a) lim r21 :Iimizlio
n-wBn?+4 e 45
5+
n
o n2
Hence the serieg5 > diverges by the Divergence Test.
n=1 n
Solution (b) limn? =«  The limit does not exist.

n-oo

Hence the serieE n® diverges by the Divergence Test.

n=1

Solution () Z(—l)n+1 diverges sincdim (-1)™* does not exist.

n=1

7.24 THE INTEGRAL TEST AND p-SERIESTEST

(Thelntegral Test) Suppose thaf is acontinuous, positive, and decreasing function for

x>1. Suppose also tha, = f(n). Then the serie§ a, and the integra!' f (x¥dx both
n=1 1

converge or both diverge. In other words:

i) If jf(x)dx converges, theli a, also converges.
1

n=1

1)) If If(x)dx diverges, thenZan also diverges.
1 n=1

p-Series By using the integral test, we can show that thlevieng result is true.

(Thep-SeriesTest) The serieszipis called thep-series.
n=1 n

Thep-series ixonvergent if p>1and divergentif p<1
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Example6: Determine whether the following series converges?

@ 5 n51 b )25 2/n
. > 5
Solution (a) m

The function f (X) :iﬂis positive, continuous and decreasing %ar 1
X

Hence we can apply the Integral Test.

® © 5 25 .
[ f(x)dx:.[X—Jrldx:tl)lfr; j_x—ﬂdx:SLu[g[ln(xﬂ)]f =

n=1

Thus j f(Xdx is divergent andziﬂls also divergent by the Integral Test.

n -
n=1 =1 —1 2

Solution (b) iS 2\/_ 2[5 2\/_} i% il
n=1n

Since Z— and Z—are p-series withp = 3 and p= Erespectlvely, they are both

nlnE
5-24/n

convergent. Th ui
n®

is convergent.

7.25 THE COMPARISON TESTS

The Direct Comparison Test

Suppose thad_a, and > b, are series with positive terms, then:
(1) If z b, is convergent ana, <b, for all n, thenz a, is also convergent.
(i) If >’b,is divergent andh, b, foralln, then) a, is also divergent.

TheLimit Comparison Test

Suppose thad_a, and z b, are series with positive terms, then

. . a . -
(1) If lim b—” =c, wherec is apositive number,
n- o
n

then> a, and > b, both converge or both diverge.

(i) If lim % =0, and ) b, converges, ther)_ a, converges

(iii) If lim % =, and > b, diverges, the)_ a, diverges

n

In this course, you are not required to know the limit comparison test. It is discussed
herefor completeness.
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Example 7. Determine whether the following series convergediverges?
1

(a) Z(gn”ﬂj O X5

n=1

Solution (a)

Let [ n j bn:(ij [lj |
3n+1 3n 3

j <(?1J , we havea, <b,

Since(
3n+1

o> (1), L . o
The serlesz (—j IS a convergent series since it is a geometriesavith initial term
n=1

a:% and common ratio :%, which is less than 1.

Thereforez (3_11) is convergent by the Direct Comparison Test.
n=1 \ 2N

The Limit Comparison Test can also be used.

[ : } |
Iim3n+1n:Iim[ 3n ] = fim % =1>0
n-o } n-oo 3n+1 n- o 1+

3 3n

. = (1\". = n \".
Since = | is convergent, the —— | is also convergent.
Z@ | E(:ﬂnﬂ] °

n=1

Solution (b)

1

Let a, = andb, =— .
2n

n—

Since

n

>2—1n, we havea, = b,

w1 . . . . e 1
The SGI’IGSZ;IS a convergent series since it is a geometriesavith initial terma ==

n=1

and common ratia :l, which is less than 1.

The Direct Comparison Test doesn't apply. (Can you compare witélall_—l ?)
1
. - : e 2"—1 .2 1 _
Using the Limit Comparison Test: lim =lim 1 lim —1 " 1>0
2" 2"
o1 =1
SIHCE?IS convergent, theE 1 is also convergent
n=1 n=1 -

Remark: The terms of the series being tested neshhbller than those of a convergent
series otarger than those of the divergent series.
If the terms are larger than theneof a convergent series or smaller than the term
of a divergent series, then the direct comparisshdoesn't apply.
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726 THE ALTERNATING SERIESTEST (Optional, i.e., not required)
An alternating series is a series whose termsltamately positive and negative.

_q\n+l
Example: 1,111 6D
2'3 4 5 n

1-2+3-4+45-6+..+(-)"'n+...

+...

If the alternating series

D (-D™a, =a, -a, ta, —a, +...()""a, +... a,=0

n=1

satisfies (i) a,,, <a, for alln (which meansa,is nonincreasing),AND (i) lima, =0
n - o

n

then the series is convergent.

Example8: Determine whether the following series convergediverges?

@ Y ® Y
n=1 \/ﬁ n=1 n
. & (- 1 1 1 (- . .
Solution (a) The series =l-—+—=-——+...+ is alternating and
2 TR BT
e L 1 1 S | :
satisfies (f——<— [a,,<a] (i) im—=0 [lima, 6 =0]
AV n +1 \/ﬁ an ! an N— o \/ﬁ naooan
o (_1\n-1
Therefore, the seriez%is convergent by the Alternating Series Test.
n=1 n
Note: lim . 0 doesn't imply thatii is convergent
onee n n=1 \/ﬁ '

= 1. : . , 1
In fact,) — is a divergenp-series withp ==
; Jn 2

5 sin(n—zjn
Solution (b) Z—
n=1 n!

We know ) sir{n —%jn: 1-1+1-1+1.=(-D)™

n=1

i)
sinn-—_ |
c 2

o (_1\n+l
Hence) ' : =y ( 1)| is alternating and satisfies

n=1 n PR
. 1 1 .. 1 :
[ <= < ii lim—==0 lima, =0
() (h+D (3., < a] @ fim- [ima, =0]

. 1
. sm(n—zjﬂ o, (-
Therefore the seriesz =z is convergent by the Alternating Series
= n! " n!

Il
[N

Test.

10
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7.27 THE RATIO AND ROOT TESTS

Absolute Conver gence Versus Conditional Conver gence

A series Y a, is calledabsolutely convergent if the series of absolute valueys |a,| is
convergent.
If >'|a,| is divergent but) a, is convergent, then a, is said to beconditionally
conver gent.
If a series)  a, is absolutely convergent, then )" a, is convergent; the converse igot true.

Note: For a seriei a, with non-negative terms (i.e, = )0
absolute conver gence andconver gence mean the same thing.

Example9: Determine whether the sen@ cosn;
oy n2

cosn cosl cos2 cos3
Solution This series Z > + > + >
n=1 n 1 2 3
not alternating (first term is positive, next thare negative, then the following three are paositiy.

|cosn|
2

is convergent or divergent.

+... has positive and negative terms but it is

We can apply comparison test to the series of atesnhluesZIC(anI z
n n=1 n

lcosn 1 © 1. o
o <— . Weknow thatZ:—zls convergentg-series withp = 2) and

Since|cosn| <1,
n n=1 N

2 |cosn
thereforez >
n

is convergent by the Comparison Test.

.y~ COSN . :
Thus the serleg ,— Is absolute convergent and is therefore convergent

n
The Ratio Test

a,,
For a given senei a,,letL =lim—2%
n- o a‘n

i) If L<1, thenz a, is absolutely convergent.
i) If L>1orL=w,then ) a,is divergent
iii) If L =1, the testis inconclusive

o 3
Example10: Test the convergence of ser@(—l)“ n
n=1 3n

3

Solution We let 5 = (- o
n 3n

n+l(n+1) 8 " ’ :

1
—<1

e N 3(n+1) n3 n-e 3 n-«3 n 3
D",
3|'|

0o 3
Thus, by the Ratio Test, the ser@(_l)" Nis absolutely convergent and therefore convergent.
n=1 3n

11
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The Root Test

For a given seried " a, , letL = limy/ja,| .
n- o

i) If L<1,then z a, Is absolutely convergent.
i) If L>1orL=w,then) a, is divergent
iii) If L =1, the test is inconclusive

Example 11: Test the convergence of the serE §n+ gj
n

Solution:  We use a, :(2n+3j
3n+2

3
n 2+°
limq/la,| =lim g n+3) _ . n|-2.4. Thus, by the Root Test, the
noo | n| n-w (3n+2j _nﬁw(3n+2 _leo ‘AN y
3+°
n
2n+3\".
serlesz e is absolutely convergent and therefore convergent.
3n
Exam QI8$12. Determine whether the series is absolutely convergeonditional convergent or
divergent
oo 2 n n
n°+1 2 (-1
(a) (b)
Z;‘ 2n* +1 Z;‘ Jn
Solution (a):

n P 1+ 2
=Iim(n +1J = lim i -1

on? +1 B

n-co 2+%2 2

j is absolutely convergent by the Root Test.
(=

lim '{/m =limn
[ n-oo

(an +1

Thus, the seriei(
n=1

) 1 n
Solution (b): The series ) is alternating and
n=1 \/ﬁ
1 1 .1
satisfies f?: i @i)lim—=0
n+l +/n "N
(=D :
Therefore the serlei is convergent by the Alternating Test.
= n
> . . = (=D .
Butz Z |s divergent p-series withp<1). Soz is conditional convergent.
n=1 \/_ n=1 n=1 \/ﬁ

In this course, we shall apply the ratio test and the root test only to infinite series with
positive terms so that the question of conditional conver gence does not arise.

Restate the root test and ratio test for infinite series with positive terms.
Root Test:
Ratio Test:

12
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7.2.8 POWER SERIES

A series of the form

DX =y + o x+C, X7 X+,

n=0
wherex is a variable and,'s are constants is calledoawer series. The constants,'s are
called thecoefficients of the power series. We adopt the conventidr=1 even ifx = 0.

More generally, a series of the form

D ¢ (x=a)" =, +Cy(x—a)+C,(x—-a)? +cy(x—a)’ +..tc, (x—a)" +...
n=0

is called apower series centered at a or apower series about a. Here we adopt the
convention tha(x—a)° =1 whenx = a

The Convergence Theorem for Power Series

For a giverpower seriesabout a, there are only three possibilities:
(1) The series converges only when a
(i) The series converges for all

(i)  There is a positive number R such that the sedesearges iﬂx—a| <R and
diverges if [x-4a > R.

The number R is called theadius of convergence of the power series. We adopt the
convention that in case (i), we RRt=0 and in case (ii), we le€R = .

Theinterval of convergence | of a power series is the interval that contaihyvalues ofx
for which the power series converges. In caseh@®,"intervall” is actually a singleton set
{a} and in case (i), = (-, ). In case (iii)l can be one of the following intervals:

(a-R,a+R), (a-Ra+R],[a-Rat+R),or[a-R,a+R]

7.3 TAYLOR SERIESAND MACLAURIN SERIES

If a functionf (X) has a power series representation (expansion) titat is, if it can be
expressed in the following form:

f()=>c,(x-a)" for |x-al<R
n=0
then its coefficients are given by the formula
(n)
C, = O for alln
nl
Substituting this formula foc, back into the series, we have
w f(n)

f)=> nl(a) (x-a)" for|x-a<R

The power series on the right hand side is called aylor series of thefunction f at a.

In other words,
fﬁa) (x-a)+ D (x_ap+ L@ _gpos

f(x)=f(a)+ o 3

13
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In the case whea = 0, we have

f()z

which is called thé/ aclaurln Ser|e£0f function f.

£ (0)

for |x| <R

The series becomes

Example 15: Find the Taylor series fof (X) = e centered aa = 2.
Solution f(x)=¢€*, fP(x)=e*, f@x) =€, f¥(x)=¢€",...,f "V (x) =€
fQ=e,192=e,19202) =192 =€,....f ") =¢
fM@=¢e* foralln

Thus the Taylor series féi(x) = e*centered aa = 2 is
o f (n) 2
2 2

r0=3 D x-27 =3 (x-2)"
2 e

or =+ (x=2)+ S (x=22 + & (x=2)%+ ..
ﬂ( ) 2( ) 3( )

Example 16: Find the Maclaurin series f6{x)=€" and its radius of convergence.

Solution As in Example 15,f (" (x) =e* for all n. For the Maclaurin seriea,= 0 and so
fO=f20)=f?0)=..=f"0)=€"=1

f (n) n 2 3
Therefore the Maclaurin Series f{X) = Z (O) X e XXX
n=0 n n=0 nl 1 2! 3
To find the radius of convergence, use the Ratst Te
n+l
[P = |2 it i =|xlim——=0<1
" a | Ml(n+1)' Mg e (e

So the series converges for all by the Ratio Test and the radius of
convergence iR =« The interval of convergence |s= (—®,®).

Note: Some important Maclaurin series and their intisre convergence

00 o n. 2n+l 3 5 7
ST N TR N I (-11) | sinx= COXT X X X, (=00, 00)
1-x & i (2n+1)! 3 5 7
o Xn X XZ X3 00 | X2n X2 X4 X6
=) o=+ S+ T+ - cox=)>» (- =]1-—+——-— —00, 00
LTty Tty ) 23 ey Tty et )

0
Taylor polynomial of order/degreen: P, (x) :Z%(X-a)k

k=0

n £ (K
Maclaurin polynomial of order/degreen: P,(X) = Z% xX
k=0 .

14
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7.4 Fourier Series

7.4.1 Periodic Functions

A functionf is periodic if there is some positive numbesuch that

f(x+ p)= (X for all realx.

flx)

AN AN N
T

The trigonometric functions cosand sinx are periodic functions of period/2 We note that
4n,6n,8n,..., are also periods of the functions. In fact amytiple of 272 is a period of
the functions. But the smallest period i8 2The smallest period is known as the
fundamental period

The functions cosxXand sin R are periodic functions of period. In general cokx and

Examples of periodic functions

sinkx are periodic functions of perioékﬁ .

Frequency of a periodic function: frequency = 1_ _
period p

7.4.2 Fourier Series
We assume that a periodic function can be repredént an infinite series in terms of sine
and cosine functions. Such a representation is kresia Fourier series. It can be shown that:

A Fourier series of a functidnof periodp = 2L is given by

f(X =%+i(qcos%rx+ o) sin%rxj

n=1

=3+ 3 cosnwx+ h sinrw Where)=2—”=z’
2 ;(a“ B 3 2L L
where :EJ‘L f (X) dx What do these formulas look like
Lot when the period isi2

_1n nr . _ 1t , _— . .
a, = EL F(X) cos— = xdx= II—L f(x)cosmw xd: Periodic functions in problems fof
this course shall be confined to
only those with period 2.

_1pt N 17/ S . :
b, _II-L f(x)smT de_IJ‘—L f(Xsin @ xd:

The a,, a, andb, are known agourier coefficients. These coefficients are unknown and
we have to find their values by integration.

15
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Even though that the “=" sign is usually used toatq a periodic function and its Fourier
series, we need to be a little careful. The fumctiand its Fourier series “representation” are
only equal to each other if, and whenevés,continuous.

Example:
Find the Fourier coefficients of the following pedic function
-k, —7T< X< (
f(x) =
K, & x<rm

Solution

Recall the definition of Fourier series:

F()=2+3(a, cos%Tx+bn sin%-[x)
n=1
For the giverf(x), -t<x <1, we have. = /7. The Fourier coefficients are:

_ 1t 17 _Af o 7 _
% ‘IJ_L (3 dx —7—Tj_ﬂ f (><)d><—7—TU_”(—k)o|x+j0 (k)dx] =0
and
1 p= 1T 0 . 1| sinmx . snnx” |
a,=—| f(x)cos rzrcfr=—T[J:FE—ﬁf) cnsn‘ccir—]hd}'ccnsnxdx} I B [ “J=

b, :EJ'” f(X)sin nxdx:—lj0 (- Rsin nxdx-J'”( ksin nxc
- - 0

0 cosi{”
i 1 }
- n 0

= L[cosO —costnr) —cosnr+cod] = i (@-cosnm)
N7t nk

—l{k CoNX

T n

We also note thatosir=-1, cos27= ., cos3r=-1, ---

-1 for oddn
cosnsr =
1 for evem
2 for oddh
and thus 1-cosnx= .
for evem
Hence the Fourier coefficiebf is
2k ., .
— ifnis odd
b, :2—k(1—cosn77)= niT
(1074 .
0 ifn is evel

Hence

f(x) =4—k(sin X+ sin 3+~ sin 5<+j
T 3 5

16
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Example
Consider a Zrperiodic function

f() =x° +x, —TT<X<7, and f(x)= f(x+2m).
Sketch a graph of the functidfx) for values o from x = =31 to x = 3t and obtain a
Fourier series expansion of the function.

Solution

f(X

The Fourier series d¢f with period 27:

ay

==

+ > (a, cosnx+ b, sinnx)
n=1
with Fourier coefficients
1em 1¢n 3
==| f(Xdx==| (X+ 3de=rm
8 == [ f(gdx=—[_ (X+ 3 de>

and

a, :lj'” f (x)cosnxdx:lj” (x* + x )cosnxdx
nen nen

which on integration by partsyes

m

1| x* . 2X 2 . X . 1
a, ==| —sinnx+= coshx-— sinnx+t—= sinnx¥— cosn
7l n n n n f .

:14—72Tcosnﬂ:i; 1
TN n

and b, = 1'[” f (x)sinnxdx = 1J'” (x? + x)sinnxdx
nin nr

which on integration by parts/es

1| x* . 2X . 2 X 1 .
b, ==| —=sinnx+= sinnx+ — cosnx-— cosnx— sinn
71 n n n n 13

/i

= —Ecosnn: 2 1
n n

Hence we get:  f(x) =:—13n3 +ii(—1)n cosnx—i ¢ 1) sinnx
=1 n=1

2
—~n? n

17
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Example
A periodic functionf(x) of period 27(that is,f(x+27) =f(x) is defined in the interval

—JT<X<TT by

0, —m<x<0
f(x) = =X
1 Osx<rm

Sketch a graph dfx) for —37 < x< 371 and obtain a Fourier series expansion for the

function.
Solution A graph off(x) for =37 < x< 3n is shown below:
y
—) ] — —)
X
: o : : o *>
=31 —21 -t T 21 3n
_1 -+

The Fourier series fdr
_3 < -
f(x) = > + Y (a, cosnx+ b, sinnx)
n=1

Thus the Fourier coefficients are
1 n 1 0 m
=—| f(x dx:—( Odx+ ldszl

ao ]T.[—n ( ) T J.—n .[O
a, ZEJ.H f (x) cosnxdx

77' =T

_1(pe " _

= —U 0 dx+j 1cosnxdx) =0

JT\ 71 0

and b, =£I” f (X)sinnxdx :100 0 dx+ _[n sinnxdx)
Jrom JT\ -1 0

=L 1-cosnm)=L -1
ni nir
l 0 ifn isven

2 ifn isodd
nir

Thus we get:f (x) = 1 + E(s;inx+lsin3x+ Esin5x+ )
2 n 3 5

1 > 1 .
=—+ sin(2n -1 x
2 Z2 ( )

2
ﬂnzl n-—

18
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7.4.3 Odd and Even Function

Odd functions:

f(x) is an odd function if and only if (iff )

f(-x) = - ()

for —L<x<L

The graph of an odd function is symmetric aboutdhgin. If we already have the graphfof

for x=0, we can obtain the entire graph by rotating ploition throughl80 about the origin.

Examples of odd functions:

f(x) = sink) isodd because SirR[(<= - sink)

»
0§ sin(x)
: /

PR R v ; U

Fourier Seriesof Odd function

(k) = 2C-4x
{}f

23— 4x

L B

Fourier series of an odd functidi(x) defined in—-L < x<L is

f(x) =2 +Z(a cosTx+b sme)

n=1

L

with a :%j f (x)dx=0
L
L

Rl

Thus f(x) = Zb sm( %y

n=1

X :ij f(x)cos(n—deX:O, forn=1,2,3,...
L L

(also known &sourier sine series

Example:

Determine the Fourier series figx) =x%in —4< x< 4.

Recall that f(X)= +Z{a co{ j+b sm(nf(ﬂ,

Sincef(x) =% is an odd function, thum= 0 anda, =0, forn=1,2,3,.... .
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The Fourier coefficient is

b, ——jx sm(nf(]dx——j X sm( 7 jdx

2
= (-1 ”*11287]72 6

The Fourier series fdtx) =x2in —4< X< 4 is

(n*r* - 6) o j
n’r’ 4 )

(=3 (-)™128

Even functions:

f(x) is an even function if and only if (iff)
f(—x) = (X for —L<x<L
The graph of an even function is symmetric withpees to the y-axis.
Examples of even functions
(K) = =3x°+4, f(X) = cosx.

%

o 3

cogX)

L

Fourier Seriesof Even Function

Fourier series for even functidfx) defined in-L<x<L:

a, & .
f(x)==2+> (a, cos 7 x + b, smn—ﬂx)
2 & L L

where p = .[f(x)s|n( jdx o, forn=1,23,...

Thus f(x) = Ay Zan cos(nTm) (also known asourier cosine serigs

20
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Example:
Determine the Fourier seriesf@) =x° in —2< x< 2
Write
fF(x)=2+ > co nxj+b sm(nmj
) 2 ;[an { 2 2
where
1% ,, 8
=— | xdx=—=
= ¥

, h=123...

Thus the Fourier series fix) =x°in —2< x< 2 is
4,16 (1) { )

f(x) =
()= 3 Z n’ 2

Properties of Even and Odd Functions

From calculus we have

1. _[_LLf(x)dxzo if f(x)is odd on—L<x<L

2 j_LLf(x)dxzzjoLf(x)dx if f(x)is evenon—L<x<L.

--THE END
-(nby, Jun 2017)
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